Shapiro-Wilk Exponential Test
The Shapiro-Wilk Test for Exponentiality, with origin parameter unknown, employes the following statistic:
Where
- s is the sample standard deviation,
- Xmin is the minimum value in the data set, and
- n is the sample size.
Use the table below to find the critical values for the Shapiro-Wilk Test for Exponentiality. Two critical values are required. Accept the hypothesis that the distribution can be modeled with an Exponential Distribution if test statistic W(E) falls within the two values.
Note that the critical values are single-tailed values, use alpha/2 and (1-alpha)/2 to obtain the appropriate critical values since this is a two-sided test. For example, with alpha = 0.05, select the critical values corresponding to 0.025 and 0.975.
Critical Values For W(E) Test Statistics For Exponentiality
Alpha (single-tailed values) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | 0.005 | 0.010 | 0.025 | 0.050 | 0.100 | 0.500 | 0.900 | 0.950 | 0.975 | 0.990 | 0.995 |
3 | 0.2519 | 0.2538 | 0.2596 | 0.2697 | 0.2915 | 0.5714 | 0.9709 | 0.9926 | 0.9981 | 0.9997 | 0.9999 |
4 | 0.1241 | 0.1302 | 0.1434 | 0.1604 | 0.1891 | 0.3768 | 0.7514 | 0.8581 | 0.9236 | 0.9680 | 0.9837 |
5 | 0.0845 | 0.0905 | 0.1048 | 0.1187 | 0.1442 | 0.2875 | 0.5547 | 0.6682 | 0.7590 | 0.8600 | 0.9192 |
6 | 0.0610 | 0.0665 | 0.0802 | 0.0956 | 0.1173 | 0.2276 | 0.4292 | 0.5089 | 0.5842 | 0.6775 | 0.7501 |
7 | 0.0514 | 0.0591 | 0.0700 | 0.0810 | 0.0986 | 0.1874 | 0.3474 | 0.4162 | 0.4852 | 0.5706 | 0.6426 |
8 | 0.0454 | 0.0512 | 0.0614 | 0.0710 | 0.0852 | 0.1625 | 0.2934 | 0.3497 | 0.4033 | 0.4848 | 0.5428 |
9 | 0.0404 | 0.0442 | 0.0537 | 0.0633 | 0.0751 | 0.1415 | 0.2553 | 0.3005 | 0.3454 | 0.4015 | 0.4433 |
10 | 0.0369 | 0.0404 | 0.0487 | 0.0568 | 0.0678 | 0.1225 | 0.2178 | 0.2525 | 0.2879 | 0.3391 | 0.3701 |
11 | 0.0339 | 0.0380 | 0.0447 | 0.0528 | 0.0616 | 0.1112 | 0.1934 | 0.2265 | 0.2619 | 0.3039 | 0.3314 |
12 | 0.0311 | 0.0358 | 0.0410 | 0.0494 | 0.0567 | 0.1009 | 0.1723 | 0.2019 | 0.2364 | 0.2716 | 0.2978 |
13 | 0.0287 | 0.0337 | 0.0382 | 0.0460 | 0.0528 | 0.0925 | 0.1563 | 0.1829 | 0.2113 | 0.2422 | 0.2642 |
14 | 0.0265 | 0.0317 | 0.0362 | 0.0428 | 0.0496 | 0.0847 | 0.1417 | 0.1647 | 0.1862 | 0.2131 | 0.2315 |
15 | 0.0247 | 0.0298 | 0.0344 | 0.0398 | 0.0466 | 0.0778 | 0.1285 | 0.1485 | 0.1669 | 0.1926 | 0.2123 |
16 | 0.0233 | 0.0280 | 0.0326 | 0.0374 | 0.0438 | 0.0728 | 0.1187 | 0.1355 | 0.1542 | 0.1770 | 0.1931 |
17 | 0.0222 | 0.0264 | 0.0310 | 0.0352 | 0.0412 | 0.0684 | 0.1099 | 0.1257 | 0.1423 | 0.1614 | 0.1794 |
18 | 0.0212 | 0.0250 | 0.0294 | 0.0332 | 0.0388 | 0.0640 | 0.1015 | 0.1164 | 0.1311 | 0.1483 | 0.1668 |
19 | 0.0203 | 0.0238 | 0.0278 | 0.0314 | 0.0368 | 0.0600 | 0.0935 | 0.1071 | 0.1199 | 0.1374 | 0.1452 |
20 | 0.0196 | 0.0227 | 0.0264 | 0.0302 | 0.0353 | 0.0570 | 0.0884 | 0.1002 | 0.1121 | 0.1286 | 0.1369 |
21 | 0.0190 | 0.0217 | 0.0250 | 0.0290 | 0.0337 | 0.0540 | 0.0839 | 0.0948 | 0.1054 | 0.1198 | 0.1288 |
22 | 0.0185 | 0.0208 | 0.0238 | 0.0278 | 0.0323 | 0.0516 | 0.0794 | 0.0894 | 0.0988 | 0.1118 | 0.1212 |
23 | 0.0181 | 0.0201 | 0.0230 | 0.0266 | 0.0310 | 0.0492 | 0.0749 | 0.0836 | 0.0933 | 0.1043 | 0.1142 |
24 | 0.0177 | 0.0194 | 0.0224 | 0.0256 | 0.0298 | 0.0468 | 0.0704 | 0.0788 | 0.0882 | 0.0984 | 0.1071 |
25 | 0.0173 | 0.0188 | 0.0218 | 0.0248 | 0.0286 | 0.0447 | 0.0668 | 0.0749 | 0.0836 | 0.0927 | 0.1000 |
26 | 0.0169 | 0.0182 | 0.0213 | 0.0240 | 0.0274 | 0.0426 | 0.0636 | 0.0712 | 0.0791 | 0.0885 | 0.0948 |
27 | 0.0165 | 0.0177 | 0.0208 | 0.0232 | 0.0264 | 0.0407 | 0.0606 | 0.0678 | 0.0747 | 0.0843 | 0.0896 |
28 | 0.0161 | 0.0172 | 0.0203 | 0.0225 | 0.0256 | 0.0391 | 0.0576 | 0.0649 | 0.0706 | 0.0801 | 0.0859 |
29 | 0.0157 | 0.0168 | 0.0198 | 0.0219 | 0.0249 | 0.0377 | 0.0555 | 0.0621 | 0.0671 | 0.0759 | 0.0822 |
30 | 0.0153 | 0.0164 | 0.0193 | 0.0213 | 0.0242 | 0.0364 | 0.0536 | 0.0593 | 0.0643 | 0.0719 | 0.0786 |
31 | 0.0149 | 0.0160 | 0.0188 | 0.0207 | 0.0235 | 0.0352 | 0.0518 | 0.0569 | 0.0615 | 0.0719 | 0.0753 |
32 | 0.0145 | 0.0156 | 0.0183 | 0.0201 | 0.0229 | 0.0340 | 0.0491 | 0.0547 | 0.0591 | 0.0686 | 0.0722 |
33 | 0.0141 | 0.0152 | 0.0178 | 0.0195 | 0.0223 | 0.0329 | 0.0475 | 0.0527 | 0.0573 | 0.0661 | 0.0691 |
34 | 0.0137 | 0.0148 | 0.0173 | 0.0190 | 0.0217 | 0.0319 | 0.0459 | 0.0507 | 0.0555 | 0.0636 | 0.0660 |
35 | 0.0133 | 0.0144 | 0.0168 | 0.0185 | 0.0211 | 0.0309 | 0.0444 | 0.0488 | 0.0537 | 0.0611 | 0.0639 |
36 | 0.0129 | 0.0141 | 0.0164 | 0.0180 | 0.0205 | 0.0300 | 0.0429 | 0.0470 | 0.0519 | 0.0588 | 0.0608 |
37 | 0.0125 | 0.0138 | 0.0160 | 0.0176 | 0.0200 | 0.0291 | 0.0414 | 0.0454 | 0.0501 | 0.0567 | 0.0578 |
38 | 0.0122 | 0.0135 | 0.0156 | 0.0172 | 0.0195 | 0.0283 | 0.0400 | 0.0440 | 0.0483 | 0.0546 | 0.0553 |
39 | 0.0120 | 0.0133 | 0.0152 | 0.0168 | 0.0190 | 0.0275 | 0.0386 | 0.0426 | 0.0465 | 0.0525 | 0.0531 |
40 | 0.0118 | 0.0131 | 0.0148 | 0.0164 | 0.0186 | 0.0267 | 0.0375 | 0.0414 | 0.0447 | 0.0512 | 0.0510 |
41 | 0.0116 | 0.0129 | 0.0144 | 0.0161 | 0.0182 | 0.0260 | 0.0364 | 0.0402 | 0.0430 | 0.0499 | 0.0493 |
42 | 0.0114 | 0.0127 | 0.0140 | 0.0158 | 0.0178 | 0.0253 | 0.0355 | 0.0389 | 0.0417 | 0.0476 | 0.0482 |
43 | 0.0112 | 0.0125 | 0.0137 | 0.0155 | 0.0174 | 0.0248 | 0.0346 | 0.0379 | 0.0405 | 0.0464 | 0.0471 |
44 | 0.0110 | 0.0123 | 0.0134 | 0.0152 | 0.0170 | 0.0243 | 0.0338 | 0.0369 | 0.0394 | 0.0452 | 0.0460 |
45 | 0.0108 | 0.0121 | 0.0131 | 0.0149 | 0.0166 | 0.0238 | 0.0329 | 0.0359 | 0.0385 | 0.0440 | 0.0449 |
46 | 0.0106 | 0.0119 | 0.0129 | 0.0146 | 0.0162 | 0.0233 | 0.0320 | 0.0349 | 0.0376 | 0.0423 | 0.0438 |
47 | 0.0104 | 0.0117 | 0.0127 | 0.0143 | 0.0158 | 0.0228 | 0.0311 | 0.0340 | 0.0367 | 0.0416 | 0.0427 |
48 | 0.0103 | 0.0115 | 0.0125 | 0.0143 | 0.0158 | 0.0228 | 0.0311 | 0.0340 | 0.0367 | 0.0394 | 0.0426 |
49 | 0.0102 | 0.0113 | 0.0123 | 0.0141 | 0.0155 | 0.0223 | 0.0303 | 0.0332 | 0.0358 | 0.0382 | 0.0416 |
50 | 0.0101 | 0.0111 | 0.0122 | 0.0137 | 0.0149 | 0.0213 | 0.0288 | 0.0317 | 0.0340 | 0.0360 | 0.0394 |
51 | 0.0100 | 0.0109 | 0.0120 | 0.0135 | 0.0147 | 0.0209 | 0.0282 | 0.0310 | 0.0331 | 0.0349 | 0.0383 |
52 | 0.0099 | 0.0107 | 0.0119 | 0.0133 | 0.0145 | 0.0205 | 0.0276 | 0.0303 | 0.0323 | 0.0341 | 0.0373 |
53 | 0.0097 | 0.0106 | 0.0118 | 0.0131 | 0.0143 | 0.0201 | 0.0270 | 0.0296 | 0.0315 | 0.0332 | 0.0363 |
54 | 0.0095 | 0.0104 | 0.0116 | 0.0129 | 0.0141 | 0.0197 | 0.0264 | 0.0289 | 0.0307 | 0.0329 | 0.0353 |
55 | 0.0094 | 0.0103 | 0.0115 | 0.0127 | 0.0139 | 0.0193 | 0.0258 | 0.0282 | 0.0299 | 0.0321 | 0.0343 |
56 | 0.0093 | 0.0102 | 0.0113 | 0.0125 | 0.0137 | 0.0189 | 0.0252 | 0.0275 | 0.0292 | 0.0313 | 0.0333 |
57 | 0.0092 | 0.0101 | 0.0112 | 0.0123 | 0.0135 | 0.0185 | 0.0247 | 0.0268 | 0.0285 | 0.0306 | 0.0324 |
58 | 0.0091 | 0.0100 | 0.0110 | 0.0121 | 0.0133 | 0.0182 | 0.0242 | 0.0262 | 0.0279 | 0.0301 | 0.0318 |
59 | 0.0090 | 0.0098 | 0.0109 | 0.0119 | 0.0131 | 0.0179 | 0.0238 | 0.0257 | 0.0274 | 0.0296 | 0.0312 |
60 | 0.0089 | 0.0095 | 0.0108 | 0.0117 | 0.0129 | 0.0176 | 0.0234 | 0.0252 | 0.0270 | 0.0291 | 0.0306 |
61 | 0.0088 | 0.0093 | 0.0107 | 0.0115 | 0.0127 | 0.0173 | 0.0230 | 0.0247 | 0.0266 | 0.0286 | 0.0301 |
62 | 0.0087 | 0.0092 | 0.0105 | 0.0113 | 0.0125 | 0.0170 | 0.0226 | 0.0242 | 0.0262 | 0.0281 | 0.0296 |
63 | 0.0086 | 0.0091 | 0.0104 | 0.0112 | 0.0123 | 0.0167 | 0.0222 | 0.0238 | 0.0257 | 0.0276 | 0.0291 |
64 | 0.0085 | 0.0090 | 0.0102 | 0.0111 | 0.0121 | 0.0164 | 0.0218 | 0.0234 | 0.0252 | 0.0271 | 0.0286 |
65 | 0.0084 | 0.0089 | 0.0101 | 0.0109 | 0.0119 | 0.0161 | 0.0215 | 0.0230 | 0.0247 | 0.0266 | 0.0281 |
66 | 0.0082 | 0.0088 | 0.0099 | 0.0108 | 0.0117 | 0.0159 | 0.0211 | 0.0225 | 0.0242 | 0.0261 | 0.0276 |
67 | 0.0081 | 0.0087 | 0.0098 | 0.0107 | 0.0115 | 0.0157 | 0.0207 | 0.0221 | 0.0237 | 0.0256 | 0.0271 |
68 | 0.0080 | 0.0086 | 0.0096 | 0.0105 | 0.0114 | 0.0155 | 0.0204 | 0.0217 | 0.0232 | 0.0251 | 0.0266 |
69 | 0.0079 | 0.0085 | 0.0095 | 0.0104 | 0.0113 | 0.0152 | 0.0198 | 0.0213 | 0.0227 | 0.0246 | 0.0261 |
70 | 0.0078 | 0.0084 | 0.0094 | 0.0103 | 0.0111 | 0.0150 | 0.0194 | 0.0209 | 0.0222 | 0.0241 | 0.0256 |
71 | 0.0077 | 0.0083 | 0.0093 | 0.0102 | 0.0109 | 0.0147 | 0.0191 | 0.0205 | 0.0218 | 0.0237 | 0.0251 |
72 | 0.0076 | 0.0082 | 0.0092 | 0.0101 | 0.0108 | 0.0145 | 0.0188 | 0.0201 | 0.0214 | 0.0232 | 0.0246 |
73 | 0.0075 | 0.0081 | 0.0091 | 0.0100 | 0.0107 | 0.0143 | 0.0185 | 0.0198 | 0.0211 | 0.0228 | 0.0241 |
74 | 0.0074 | 0.0080 | 0.0090 | 0.0098 | 0.0106 | 0.0141 | 0.0182 | 0.0195 | 0.0208 | 0.0224 | 0.0236 |
75 | 0.0073 | 0.0079 | 0.0089 | 0.0097 | 0.0105 | 0.0139 | 0.0179 | 0.0192 | 0.0205 | 0.0220 | 0.0231 |
76 | 0.0073 | 0.0078 | 0.0088 | 0.0096 | 0.0104 | 0.0137 | 0.0176 | 0.0189 | 0.0202 | 0.0217 | 0.0227 |
77 | 0.0072 | 0.0077 | 0.0087 | 0.0095 | 0.0103 | 0.0135 | 0.0173 | 0.0186 | 0.0199 | 0.0214 | 0.0223 |
78 | 0.0071 | 0.0077 | 0.0086 | 0.0093 | 0.0101 | 0.0134 | 0.0170 | 0.0183 | 0.0196 | 0.0211 | 0.0219 |
79 | 0.0070 | 0.0076 | 0.0085 | 0.0092 | 0.0100 | 0.0132 | 0.0168 | 0.0180 | 0.0193 | 0.0208 | 0.0215 |
80 | 0.0070 | 0.0075 | 0.0084 | 0.0091 | 0.0099 | 0.0131 | 0.0166 | 0.0177 | 0.0190 | 0.0205 | 0.0211 |
81 | 0.0069 | 0.0074 | 0.0083 | 0.0090 | 0.0098 | 0.0129 | 0.0164 | 0.0175 | 0.0187 | 0.0202 | 0.0207 |
82 | 0.0068 | 0.0074 | 0.0082 | 0.0088 | 0.0097 | 0.0128 | 0.0162 | 0.0173 | 0.0184 | 0.0199 | 0.0203 |
83 | 0.0067 | 0.0073 | 0.0081 | 0.0087 | 0.0096 | 0.0126 | 0.0160 | 0.0170 | 0.0181 | 0.0196 | 0.0199 |
84 | 0.0067 | 0.0073 | 0.0080 | 0.0086 | 0.0095 | 0.0125 | 0.0158 | 0.0168 | 0.0178 | 0.0193 | 0.0196 |
85 | 0.0065 | 0.0072 | 0.0079 | 0.0085 | 0.0094 | 0.0123 | 0.0156 | 0.0166 | 0.0174 | 0.0190 | 0.0193 |
86 | 0.0066 | 0.0071 | 0.0078 | 0.0085 | 0.0093 | 0.0122 | 0.0154 | 0.0164 | 0.0172 | 0.0187 | 0.0190 |
87 | 0.0065 | 0.0071 | 0.0077 | 0.0084 | 0.0092 | 0.0120 | 0.0152 | 0.0162 | 0.0170 | 0.0184 | 0.0187 |
88 | 0.0065 | 0.0070 | 0.0077 | 0.0084 | 0.0091 | 0.0119 | 0.0150 | 0.0160 | 0.0168 | 0.0181 | 0.0185 |
89 | 0.0064 | 0.0070 | 0.0076 | 0.0083 | 0.0090 | 0.0117 | 0.0148 | 0.0158 | 0.0166 | 0.0179 | 0.0183 |
90 | 0.0064 | 0.0069 | 0.0075 | 0.0082 | 0.0089 | 0.0116 | 0.0147 | 0.0156 | 0.0164 | 0.0176 | 0.0181 |
91 | 0.0063 | 0.0068 | 0.0075 | 0.0082 | 0.0088 | 0.0114 | 0.0145 | 0.0154 | 0.0162 | 0.0173 | 0.0179 |
92 | 0.0063 | 0.0068 | 0.0074 | 0.0081 | 0.0087 | 0.0113 | 0.0143 | 0.0153 | 0.0160 | 0.0171 | 0.0177 |
93 | 0.0062 | 0.0067 | 0.0073 | 0.0081 | 0.0086 | 0.0112 | 0.0141 | 0.0151 | 0.0158 | 0.0168 | 0.0175 |
94 | 0.0062 | 0.0067 | 0.0073 | 0.0080 | 0.0085 | 0.0110 | 0.0139 | 0.0149 | 0.0156 | 0.0165 | 0.0173 |
95 | 0.0061 | 0.0066 | 0.0072 | 0.0079 | 0.0084 | 0.0109 | 0.0138 | 0.0147 | 0.0154 | 0.0163 | 0.0171 |
96 | 0.0061 | 0.0065 | 0.0072 | 0.0078 | 0.0083 | 0.0108 | 0.0136 | 0.0145 | 0.0153 | 0.0161 | 0.0169 |
97 | 0.0060 | 0.0065 | 0.0071 | 0.0077 | 0.0082 | 0.0107 | 0.0134 | 0.0143 | 0.0152 | 0.0159 | 0.0167 |
98 | 0.0060 | 0.0064 | 0.0070 | 0.0076 | 0.0081 | 0.0105 | 0.0133 | 0.0142 | 0.0151 | 0.0157 | 0.0165 |
99 | 0.0059 | 0.0064 | 0.0070 | 0.0075 | 0.0080 | 0.0104 | 0.0132 | 0.0140 | 0.0150 | 0.0155 | 0.0163 |
100 | 0.0059 | 0.0063 | 0.0069 | 0.0074 | 0.0079 | 0.0103 | 0.0131 | 0.0139 | 0.0149 | 0.0153 | 0.0161 |